Article 8415

Title of the article

AN INVERSE PROBLEM OF TENSOR RECONSTRUCTION OF A MULTI-SECTIONAL DIAPHRAGM IN A RECTANGULAR WAVEGUIDE BY THE TRANSMISSION OR REFLECTION COEFFICIENTS

Authors

Derevyanchuk Ekaterina Dmitrievna, Research-laboratory assistant, Research Center “Supercomputer modeling in electrodynamics”, Penza State University (40 Krasnaya street, Penza, Russia), mmm@pnzgu.ru

Index UDK

517.958, 537.876.46

Abstract

Background. The aim of the work is to study an inverse problem of tensor reconstruction of a multi-sectional diaphragm in a rectangular waveguide by the transmission or reflection coefficients.
Material and methods. The problem is considered as an inverse problem of electrodynamics, it is presented as a boundary value problem for Maxwell’s equations; it was applied the theory of boundary value problems for Maxwell’s equations, the theory of approximate methods for solving nonlinear systems.
Results. The author has developed a numerical-analytical solution for the inverse problem of tensor reconstruction of a multi-sectional diaphragm in a rectangular waveguide by the transmission or reflection coefficients.
Conclusions. The obtained results can be used for determination of electromagnetic characteristics of anisotropic composite materials.

Key words

inverse electrodynamics problem, multi-sectional diaphragm, permeability tensor, rectangular waveguide.

Download PDF
References

1. Il'inskiy A. S., Kravtsov V. V., Sveshnikov A. G. Matematicheskie modeli elektrodinamiki [Mathematical models of electrodynamics]. Moscow: Vysshaya shkola, 1991, 224 p.
2. Medvedik M. Yu., Smirnov Yu. G. Obratnye zadachi vosstanovleniya dielektricheskoy pronitsaemosti neodnorodnogo tela v volnovode [Inverse problems of dielectric permeability reconstruction of a heterogeneous body in a waveguide]. Penza: Izd-vo PGU, 2014, 76 p.
3. Derevyanchuk E. D. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2013, no. 1 (25), pp. 34–44.
4. Derevyanchuk E. D., Smirnov Yu. G. Days on Diffraction: Proceedings of the International Conference (St. Petersburg, Russia, 2014). Saint-Petersburg, 2014, pp. 65–68.
5. Smirnov Yu. G., Shestopalov Yu. V. and Derevyanchuk E. D. Inverse Problems and Large-Scale Computations, Series: Springer Proceedings in Mathematics and Statistics. 2013, vol. 52, pp. 169–181.

 

Дата создания: 12.04.2016 09:29
Дата обновления: 12.04.2016 11:32